Spectral asymptotics of Pauli operators and orthogonal polynomials in complex domains
نویسندگان
چکیده
We consider the spectrum of a two-dimensional Pauli operator with a compactly supported electric potential and a variable magnetic field with a positive mean value. The rate of accumulation of eigenvalues to zero is described in terms of the logarithmic capacity of the support of the electric potential. A connection between these eigenvalues and orthogonal polynomials in complex domains is established.
منابع مشابه
Multiple orthogonal polynomials
Results on multiple orthogonal polynomials will be surveyed. Multiple orthogonal polynomials are intimately related to Hermite–Pad e approximants and often they are also called Hermite–Pad e polynomials. Special attention will be paid to an application of multiple orthogonal polynomials and to analytic theory of two model families of general multiple orthogonal polynomials, referred to as Angel...
متن کاملCommuting difference operators, spinor bundles and the asymptotics of pseudo-orthogonal polynomials with respect to varying complex weights
The paper has three parts. In the first part we apply the theory of commuting pairs of (pseudo) difference operators to the (formal) asymptotics of orthogonal polynomials: using purely geometrical arguments we show heuristically that the asymptotics, for large degrees, of orthogonal polynomial with respect to varying weights is intimately related to certain spinor bundles on a hyperelliptic alg...
متن کاملCommuting difference operators, spinor bundles and the asymptotics of orthogonal polynomials with respect to varying complex weights
The paper has three parts. In the first part we apply the theory of commuting pairs of (pseudo) difference operators to the (formal) asymptotics of orthogonal polynomials: using purely geometrical arguments we show heuristically that the asymptotics, for large degrees, of orthogonal polynomial with respect to varying weights is intimately related to certain spinor bundles on a hyperelliptic alg...
متن کاملAnalysis of High-order Approximations by Spectral Interpolation Applied to One- and Two-dimensional Finite Element Method
The implementation of high-order (spectral) approximations associated with FEM is an approach to overcome the difficulties encountered in the numerical analysis of complex problems. This paper proposes the use of the spectral finite element method, originally developed for computational fluid dynamics problems, to achieve improved solutions for these types of problems. Here, the interpolation n...
متن کاملStrong asymptotics of Laguerre-type orthogonal polynomials and applications in random matrix theory
We consider polynomials orthogonal on [0,∞) with respect to Laguerre-type weights w(x) = xe, where α > −1 and where Q denotes a polynomial with positive leading coefficient. The main purpose of this paper is to determine Plancherel-Rotach type asymptotics in the entire complex plane for the orthonormal polynomials with respect to w, as well as asymptotics of the corresponding recurrence coeffic...
متن کامل